Translate My Page

Saturday, September 8, 2012

So what exactly is nanotechnology?

A word of caution

Truly revolutionary nanotechnology products, materials and applications, such as nanorobotics, are years in the future (some say only a few years; some say many years). What qualifies as "nanotechnology" today is basic research and development that is happening in laboratories all over the world. "Nanotechnology" products that are on the market today are mostly gradually improved products (using evolutionary nanotechnology) where some form of nanotechnology enabled material (such as carbon nanotubes, nanocomposite structures or nanoparticles of a particular substance) or nanotechnology process (e.g. nanopatterning or quantum dots for medical imaging) is used in the manufacturing process. In their ongoing quest to improve existing products by creating smaller components and better performance materials, all at a lower cost, the number of companies that will manufacture "nanoproducts" (by this definition) will grow very fast and soon make up the majority of all companies across many industries. Evolutionary nanotechnology should therefore be viewed as a process that gradually will affect most companies and industries.

 Definition of nan'o•tech•nol'o•gy n

One of the problems facing nanotechnology is the confusion about its definition. Most definitions revolve around the study and control of phenomena and materials at length scales below 100 nm and quite often they make a comparison with a human hair, which is about 80,000 nm wide. Some definitions include a reference to molecular systems and devices and nanotechnology 'purists' argue that any definition of nanotechnology needs to include a reference to "functional systems". The inaugural issue of Nature Nanotechnology asked 13 researchers from different areas what nanotechnology means to them and the responses, from enthusiastic to sceptical, reflect a variety of perspectives. 

It seems that a size limitation of nanotechnology to the 1-100 nm range, the area where size-dependant quantum effects come to bear, would exclude numerous materials and devices, especially in the pharamaceutical area, and some experts caution against a rigid definition based on a sub-100 nm size.
Another important criteria for the definition is the requirement that the nano-structure is man-made. Otherwise you would have to include every naturally formed biomolecule and material particle, in effect redefining much of chemistry and molecular biology as 'nanotechnology.'
The most important requirement for the nanotechnology definition is that the nano-structure has special properties that are exclusively due to its nanoscale proportions.

I found a good definition that is practical and unconstrained by any arbitrary size limitations:

 The design, characterization, production, and application of structures, devices, and systems by controlled manipulation of size and shape at the nanometer scale (atomic, molecular, and macromolecular scale) that produces structures, devices, and systems with at least one novel/superior characteristic or property.

The Significance of the Nanoscale
A nanometer (nm) is one thousand millionth of a meter. For comparison, a red blood cell is approximately 7,000 nm wide and a water molecule is almost 0.3nm across. People are interested in the nanoscale (which we define to be from 100nm down to the size of atoms (approximately 0.2nm)) because it is at this scale that the properties of materials can be very different from those at a larger scale. We define nanoscience as the study of phenomena and manipulation of materials at atomic, molecular and macromolecular scales, where properties differ significantly from those at a larger scale; and nanotechnologies as the design, characterisation, production and application of structures, devices and systems by controlling shape and size at the nanometer scale. In some senses, nanoscience and nanotechnologies are not new. Chemists have been making polymers, which are large molecules made up of nanoscale subunits, for many decades and nanotechnologies have been used to create the tiny features on computer chips for the past 20 years. However, advances in the tools that now allow atoms and molecules to be examined and probed with great precision have enabled the expansion and development of nanoscience and nanotechnologies.
Watch an introduction to nanotechnology, starting with Richard Feynman's classic talk in December 1959 "There's Plenty of Room at the Bottom - An Invitation to Enter a New Field of Physics."
The bulk properties of materials often change dramatically with nano ingredients. Composites made from particles of nano-size ceramics or metals smaller than 100 nanometers can suddenly become much stronger than predicted by existing materials-science models. For example, metals with a so-called grain size of around 10 nanometers are as much as seven times harder and tougher than their ordinary counterparts with grain sizes in the hundreds of nanometers. The causes of these drastic changes stem from the weird world of quantum physics. The bulk properties of any material are merely the average of all the quantum forces affecting all the atoms. As you make things smaller and smaller, you eventually reach a point where the averaging no longer works. 
The properties of materials can be different at the nanoscale for two main reasons: 
First, nanomaterials have a relatively larger surface area when compared to the same mass of material produced in a larger form. This can make materials more chemically reactive (in some cases materials that are inert in their larger form are reactive when produced in their nanoscale form), and affect their strength or electrical properties.
Second, quantum effects can begin to dominate the behaviour of matter at the nanoscale - particularly at the lower end - affecting the optical, electrical and magnetic behaviour of materials. Materials can be produced that are nanoscale in one dimension (for example, very thin surface coatings), in two dimensions (for example, nanowires and nanotubes) or in all three dimensions (for example, nanoparticles).
Much of nanoscience and many nanotechnologies are concerned with producing new or enhanced materials. Nanomaterials can be constructed by 'top down' techniques, producing very small structures from larger pieces of material, for example by etching to create circuits on the surface of a silicon microchip. They may also be constructed by 'bottom up' techniques, atom by atom or molecule by molecule. One way of doing this is self-assembly, in which the atoms or molecules arrange themselves into a structure due to their natural properties. Crystals grown for the semiconductor industry provide an example of self assembly, as does chemical synthesis of large molecules. A second way is to use tools to move each atom or molecule individually. Although this ‘positional assembly’ offers greater control over construction, it is currently very laborious and not suitable for industrial applications.
It has been 25 years since the scanning tunneling microscope (STM) was invented, followed four years later by the atomic force microscope, and that's when nanoscience and nanotechnology really started to take off. Various forms of scanning probe microscopes based on these discoveries are essential for many areas of today's research. Scanning probe techniques have become the workhorse of nanoscience and nanotechnology research. Here is a Scanning Electron Microscope (SEM) image of a gold tip for Near-field Scanning Optical Microscopy (SNOM) obtained by Focussed Ion Beam (FIB) milling. The small tip at the center of the structure measures some tens of nanometers.
 Current applications of nanoscale materials include very thin coatings used, for example, in electronics and active surfaces (for example, self-cleaning windows). In most applications the nanoscale components will be fixed or embedded but in some, such as those used in cosmetics and in some pilot environmental remediation applications, free nanoparticles are used. The ability to machine materials to very high precision and accuracy (better than 100nm) is leading to considerable benefits in a wide range of industrial sectors, for example in the production of components for the information and communication technology, automotive and aerospace industries.

Nanotechnology in information technology

Information and communication technology is an important and rapidly growing industrial sector with a high rate of innovation. Enormous progress has been made by making a transition from traditional to nanotechnology electronics. Nanotechnology has created a tremendous change in information and communication technology.
Breakthrough areas

Breakthrough in information and communication technology due to nanotechnology can happen in two steps. First step is top-down miniaturization approach which will take conventional microstructures across the boundary to nanotechnology. Secondly, in the longer term, bottom-up nanoelectronics and nanosystem engineering will emerge using technologies such as self-organization process to assemble circuits and systems.


Development are taking place on ultra-integrated (opto)electronics combined with powerful wireless technology as low-price mass products, ultra miniaturization, the design of innovative sensors, production of cheap and powerful polytronic circuits, novel system architectures using nanotechnology for future DNA computing which is interface to biochemical processes and quantum computing which can solve problems for which there are no efficient classical algorithms. Due to the development of nanoelectronic components, quantum cryptography for military and intelligence applications is emerging.

Memory storage

Memory storage before the advent of nanotechnology relied on transistors, but now reconfigurable arrays are formed for storing large amount of data in small space. For example, we can expect to see the introduction of magnetic RAMs and resonant tunnel elements in logical circuits in the near future. Every single nanobit of a memory storage device is used for storing information. Molecular electronics based on carbon nanotubes or organic macromolecules will be used.


Nano amplification and chip embedding is used for building semiconductor devices which can even maintain and neutralize the electric flow. Integrated nanocircuits are used in the silicon chips to reduce the size of the processors. Approaches promising success in the medium term include e.g. rapid single-flux quantum (RSFQ) logic or single electron transistors.

Display and audio devices

Picture quality and resolution of display devices has improved with the help of nanotechnology. Nanopixelation of these devices make the picture feel real. Similarly frequency modulation in audio devices has been digitized to billionth bit of signals.

Data processing and transmission

In the field of data processing and transmission development of electronic, optical and optoelectronic components are expected to lead to lower cost or more precise processes in the field of manufacturing technology. Development of nanoscale logical and storage components are made for the currently dominant CMOS technology using quantum dots and carbon nanotubes. Photonic crystals have potential for use in purely optical circuits as a basis for future information processing based solely on light (photonics). In molecular electronics, nanotechnology can be used to assemble electronic components with new characteristics at atomic level, with advantages including potentially high packing density. Smaller, faster and better components based on quantum mechanical effects, new architectures and new biochemical computing concept called DNA computing are possible with nanotechnology. The new phenomenon, called the "quantum mirage" effect, may enable data transfer within future nanoscale electronic circuits too small to use wires.

Future nanotechnology areas

Nanotechnology is the next industrial revolution and the telecommunications industry will be radically transformed by it in the future. Nanotechnology has revolutionized the telecommunications, computing, and networking industries. The emerging innovation technologies are:

*Nanomaterials with novel optical, electrical, and magnetic properties

*Faster and smaller non-silicon-based chipsets, memory, and processors

*New-science computers based on Quantum Computing

*Advanced microscopy and manufacturing systems

*Faster and smaller telecom switches, including optical switches

*Higher-speed transmission phenomena based on plasmonics and other quantum-level phenomena

* Nanoscale MEMS: micro-electro-mechanical systems
Share My Posts! :)

1 comment: